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Abstract: The present study deals with the two dimensional deformation of fibre reinforced micropolar thermoelastic 
medium. A mechanical force is applied along the interface of elastic half space and fibre reinforced micropolar thermoelastic 
half space. The analytic expresssions for the considered variables have been obtained using normal mode analysis technique. 
The effect of  microrotation on the derived components have been depicted graphically. 
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Introduction 
The dynamical interaction between the thermal and mechanical has great practical applications in modern aeronautics, 
astronatics, nuclear reactors, and high-energy particle accelerators. Classical elasticity is not adequate to model the behavior 
of materials possessing internal structure. Furthermore, the micropolar elastic model is more realistic than the purely elastic 
theory for studying the response of materials to external stimuli. Green and Lindsay [1}developed the theory of 
thermoelasticity. Eringen and Suhubi [2] and Suhubi and Eringen [3] developed a nonlinear theory of micro-elastic solids. 
Later Eringen [4-6] developed a theory for the special class of micro-elastic materials and called it the "linear theory of 
micropolar elasticity". Under this theory, solids can undergo macro-deformations and micro-rotations. 
A reinforced structural component is designed for all conditions of stresses that may occur and in accordance with the 
principles of applied mechanics. Fiber-reinforced composites are used in a variety of structures due to their low weight and 
high strength. A reinforced medium plays a very interesting role in civil engineering and geophysics, as well as aerospace 
structural dynamics (wings, fuselage etc). The idea of introducing a continuous self-reinforcement at every point of an elastic 
solid was given by Belfied et al.[7]. The model was later applied to the rotation of a tube by Verma and Rana [8]. Sengupta 
and Nath [9] discussed the problem of the surface waves in fiber-reinforced anisotropic elastic media. The problem of wave 
propagation in thermally-conducting linear fibre-reinforced composite materials was analyzed by Singh [10]. Abbas and 
Othman [11] and Othman and co-workers [12-15] discussed some problems in fiber-reinforced thermoelastic medium. The 
field equations and constitutive relations for generalized thermo-elastic medium in the absence of body forces, body couples 
and heat sources in the context of generalized thermo-elasticity are given by [7]: 
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The equations of elastic medium are:  
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where, the notations have usual meanings. 
we restrict our analysis to the plane strain parallel to xy -plane with displacement vector ,0),(= vuu . 
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Solution of the Problem 
We use normal mode analysis technique as, 
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where   is complex frequency, b  is wave number in y -direction and )(),(),(),(),(),(),(
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Eliminating )(* xv , )(* xT , )(* x  from (7)-(10), we get  
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The series solution of (14) is given by, 
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),( bM n  is specific function depending upon b  and , 2
nk  ; n =1,2,3,4 are the roots of (14).        
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Similarly for elastic half space, the solutions are  
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Boundary Conditions 
To determine nM ; ( n =1,2,3,4) and nR  ;( n =1,2)., The  boundary conditions at the surface 0=x  have been taken as, 
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where 1F  is the magnitude of mechanical force. 

Using the expressions of xx , e
xx , xy , e

xy , u , eu , v , ev , T , yzm  into above boundary conditions, we get, 
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After solving these, we get the values of constants 214321 ,,,,, RRMMMM  and hence obtain the components of 
considered physical quantities. 
 
Numerical Results and Discussions 
 For numerical computations, numerical values for the physical constants are given by[13]:  

 = 29 /109.4 mN , T = 29 /101.89 mN , KT 5.274=0  

L = 29 /102.45 mN , = 29 /101.28 mN , 

 = 29 /100.32 mN , )/(5= kgKJCE , 211 /10= mNk ,  N1100.779=  , )/(0.3=* mkWK , 17107.4033=  kt ,  
210 /102.4= mNe  , ,/101.2= 210 mNe  ./101.7= 33 mkg  

0.4=t  100  x  1.3=y .The variations are shown in figures (1)-(3) for 1.0=1F ,  0= , 0.3=0  , 

0.1= and (for G-L theory) by taking 0.4=0 , 

 
Disussion and Conclusion 
From fig-(1)-(3), it is clear that,  normal displacement, normal force stress and tangential couple stress have higher values 
near the point of application of source, which decreases with the increase in horizontal distance. The values are higher for TS 
as compared to FRMTS, MTS and FRTS, showing the appreciable effect of mechanical source and anisotropy in a fibre 
reinforced micropolar thermoelastic medium. 
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Figure-1: Variation of normal displacement with distance 

 
Figure-2: Variation of normal force stress with distance 

 

 
Figure-3: Variation of tangential couple stress with distance 

 
 
 


